Validation of the operational IASI L2 processor using AIRS and ECMWF data: clear and cloudy retrievals

Xavier Calbet, Peter Schlüssel, Tim Hultberg, Pepe Phillips, Thomas August

Introduction

Purpose

Test SOME ASPECTS of the IASI Level 2 Product
Processing Facility (IASI L2 PPF)
specifications with real space based AIRS data in order to:

- Gain experience with real space based data retrievals
- Validate single components of the IASI L2 PPF
- Select the best possible algorithms and parameters implemented in the IASI L2 PPF

Available algorithms in the IASI L2 PPF

The IASI L2 PPF has the following retrieval algorithms:

- Statistical retrievals:
 - Artificial Neural Networks (ANN)
 - Empirical Orthogonal Functions (EOF)
- Iterative or variational retrieval:
 - Levenberg-Marquardt minimisation method using a fast radiative transfer model

CLEAR SKY over OCEAN retrievals

CLEAR SKY algorithms and scenarios tested with real AIRS data

- EOF and variational retrievals tested
- Tested for day and night cases
- Tested for clear sky over ocean scenarios. A very tight cloud detection algorithm was used (see Appendix A).
- Tested for latitudes equatorwards of 50° and scan angles smaller than 15°
- Temperature, water vapour profiles and SST were retrieved. No surface emissivity, ozone or trace gases were retrieved.

The training of the EOF linear retrieval consisted of:

- Training the retrieval with:
 - •Atmospheric profiles: modified "Sampled database of 60-level atmospheric profiles from the ECMWF analyses" (F. Chevallier)
 - Radiative Transfer Model (RTM): RTTOV8-beta
 - EOF scores: Obtained from brightness temperatures
 - Linear fit of EOF scores with atmospheric profiles: with and without noise added to the spectra

First tested with the synthetic training cases:

First tested with the synthetic training cases:

Retrievals:

- Retrieving for clear-sky over ocean AIRS soundings during one randomly chosen day (6/10/2003)
- The ECMWF analyses were taken as the "truth" for comparison purposes.

Problems found:

 Channels with excessive noise had to be removed from the whole EOF retrieval chain.

Results Nighttime with no noise in training and no bias correction:

- A high bias was found between the observed and retrieved spectra
- T STD of 1-2K, RH STD of 10-20%

Results with no noise in training and no bias correction:

Different numbers of eigenvectors were tried.

Analytical BIAS and STD corrections

Training model: $Y'_{M,ij} = F_M(X'_{M,ik})$, Atmosphere: $Y'_{A,ij} = F_A(X'_{A,ik})$,

Resultant BIAS

$$\overline{X'_{R,k} - X'_{A,k}} = \sum_{j=1}^p eta_{kj} \sum_{k=1}^m e_{kj} (\overline{Y'_{A,k}} - \overline{Y'_{M,k}}) + \overline{X'_{M,k}} - \overline{X'_{A,k}},$$

 $k = 1 \dots q$ (Atmospheric state number)

Optimal STD

$$egin{aligned} \sum_{i=1}^{n_M} X_{M,ij} Y_{M,ik} &= \sum_{i=1}^{n_A} X_{A,ij} Y_{A,ik}, \ \sum_{i=1}^{n_M} Y_{M,ij} Y_{M,ik} &= \sum_{i=1}^{n_A} Y_{A,ij} Y_{A,ik} \end{aligned}$$

BIAS corrections

Evidence for a bias

Channel 0023, 654.902 cm^{-1}

BIAS corrections

Bias and STD: Nighttime

NIGHTTIME. Standard deviation of AIRS - (RTM+ECMWF)

CLEAR SKY BIAS and STD corrected EOF retrieval

CLEAR SKY BIAS and STD corrected EOF retrieval

Results Nighttime:

Tstdv of 1 - 1.5 K, RHstdv of 10-20%

CLEAR SKY Variational retrieval

The variational non-linear retrieval consisted of:

- Use of the Levenberg-Marquardt method.
- RTTOV8-beta was used as the RTM.
- Initialisation with the EOF retrievals.
- Surface emissivity, trace gases, O3 and surface pressure were not retrieved.
- Two step retrieval: first W V retrieval with W V band and second
 T,W V profiles and SST retrieval with "all" channels.
- All channels used except: flagged as bad and STD greater than 2K in the (RTTOV+ECMWF) - AIRS comparison
- Constraints used: forbid super-adiabatic lapse rates and supersaturation.

CLEAR SKY BIAS corrected Variational retrieval

Results Nightttime:

Very slightly worse than EOF

CLEAR SKY retrieval Conclusions

- The EOF method provides good retrievals and it is not computationally expensive.
- EOF: First order corrections: Bias corrections
- EOF: Second order corrections: STD corrections
- When compared with more accurate atmospheric data, some Variational retrievals **could** be better than EOF retrievals, since they show **more detail**.
- Atmospheric profile retrievals provide a good way to test errors of the whole processing chain on which infrared retrieved soundings are based.

CLOUDY SKY over OCEAN retrievals

CLOUDY SKY Variational retrieval

The variational non-linear retrieval consisted of the same method as the clear sky retrieval plus:

- RTTOV8-beta black cloud model used
- Added constraints: no SST retrieved and surface air temperature forced to SST.
- Cloud top set to the inversion height or where supersaturation occurs.
- Only retrievals with smaller residuals and cloud fraction below 70% used in the statistics

CLOUDY SKY BIAS corrected Variational retrieval

Results Nighttime:

STD similar to EOF clear nighttime. Big biases.

CLOUDY SKY BIAS corrected Variational retrieval (DAY)GENERAL VIEW

CLOUDY SKY BIAS corrected Variational retrieval (DAY) VIS

CLOUDY SKY BIAS corrected Variational retrieval (DAY)"HOLE"

IR

CLOUDY SKY BIAS corrected Variational retrieval (DAY) "POST FRONT"

IR

CLOUDY SKY BIAS corrected Variational retrieval (DAY) "FRONT"

CLOUDY SKY BIAS corrected Variational retrieval (DAY) "PRE FRONT"

CLOUDY SKY BIAS corrected Variational retrieval (DAY) "PRE FRONT 2"

IR

CLOUDY SKY BIAS corrected Variational retrieval (DAY) "CLEAR"

CLOUDY SKY BIAS corrected Variational retrieval (DAY) "CIRRUS"

CLOUDY SKY BIAS corrected Variational retrieval (DAY) "CIRRUS2"

CLOUDY SKY retrieval Conclusions

- Variational cloudy retrieval provide good results with such simple assumptions.
- Biases still too high.
- STD comparable to EOF clear sky daytime retrievals
- Too many constraints below the inversion layer make the retrieval slow.

Appendix A: Clear Sky used

```
Clear sky \sim -1 \text{ K} < \text{T}(3.9 \text{ um}) - \text{T}(10.8 \text{um}) < 3 \text{ K}
T(10.8 \text{um}) > 276 \text{ K}
T(11 \text{um}) > \text{SST} - 2.2 \text{ K}
T(4.0 \text{um}) - \text{T}(11.0 \text{um}) > 12 \text{ K}
T(9.3 \text{um}) - \text{T}(11.0 \text{um}) < 0 \text{ K}
T(11.0 \text{um}) - \text{T}(12.0 \text{um}) < 1 \text{ K}
T(11.0 \text{um}) - \text{T}(13.6 \text{um}) > 18 \text{ K}
```


Appendix B: BIAS corrections

Mean Bias and STD: SARTA Day & Night

Appendix C: BIAS corrections

Mean bias and STD: Daytime

Appendix D: BIAS corrections

Mean Bias and STD: RTTOV Day & Night

